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A DECOMPOSITION THEOREM FOR 
m-CONVEX SETS 

BY 

MARILYN BREEN 

ABSTRACT 

Let S be a closed m-convex subset of the plane, m >= 2, Q the set of points of 
local nonconvexity of S, with conv Q _C S. If there is some point p in 
[(bdry s)n(kerS)] -Q,  then S is a union of m -  1 closed convex sets. The 
result is best possible for every m. 

I. Introduction 

Let S be a subset of R d. The set S is said to be m -convex, m _--- 2, if and only if 

for every m distinct points in S, at least one of the line segments determined by 

these points lies in S. A point x in S is said to be a point of local convexity ors if 

and only if there is some neighborhood N of x such that if y, z E S n N, then 

[y, z] C_ S. If S fails to be locally convex at some point q in S, then q is called a 

point of local nonconvexity (lnc point) of S. 
Several interesting decomposition theorems have been obtained for closed, 

planar, 3-convex sets. Valentine [6] has proved that a closed, planar, 3-convex 

set may be written as a union of three or fewer closed convex sets. Stamey and 

Marr [4], investigating sets expressible as a union of two convex sets, have 

obtained the following result: For S closed, bounded, planar, and 3-convex, if S 

has some point of local convexity in (bdry S) n (ker S), then S is a union of two 

closed convex sets. 

General  theorems concerning this type of decomposition for closed m -convex 

subsets of the plane promise to require a large and fairly unmanageable 

collection of convex sets, and there have been few results in this area. Guay [1] 

has proved that if S is a closed, starshaped 4-convex subset of the plane whose 

kernel is one-dimensional, then S is the union of four convex sets. However,  

examples by Kay and Guay [2, ex. 4] show that a closed, starshaped m-convex 

subset of the plane need not be the union of m convex sets for m > 4. Thus the 
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problem considered in this paper is that of obtaining conditions under which an 

analogue of the Valentine, Stamey-Marr results might be proved for arbitrary 

m. 

The following familiar terminology will be used: For x, y in S, we say x sees y 

via S if and only if the corresponding segment [x, y] lies in S. Points xi," • ', x, in 

S are visually independent via S if and only if for 1 _-< i < j _-< n, x, does not see xj 

via S. Throughout the paper, conv S, ker S, and bdry S will be used to denote the 

convex hull of S, the kernel of S, and the boundary of S, respectively. 

2. The decomposition theorem 

The following theorem by Lawrence, Hare and KeneUy [3, th. 2] will be useful 

in obtaining a decomposition for m-convex sets. 

LAWRENCE, HARE, KENELLY THEOREM. Let T be a subset of a linear space such 

that each finite subset F C_ T has a k-partition, {F~,. •., F~}, where conv F~ C_ T, 

1 <- i <- k. Then T is a union of k convex sets. 

THEOREM 1. Let S be a closed m-convex subset of the plane, m >= 2, Q the set 

of lnc points of S, with convQC_S. I f  there is some point p in [ (bdryS)n  

(ker S)] ~ Q, then S is expressible as a union of  m - 1 closed convex sets. The 

result is best possible for every m. 

PROOF. Assume that S is not convex, for otherwise the result is trivial. Thus 

Q ~ O by a theorem of Tietze [5]. We begin with a series of observations which 

simplify the problem. Since conv Q_CS and p E kerS, it follows that 

conv(QU{p})C_S and QC_bdryconvQ. Moreover, since p ~ b d r y S ,  

p ~  int conv Q, and Q U {p} c_ bdry cony (Q U {p}). 

Now since p ~  Q, we may select some neighborhood N of p with N n s 

convex. Let H be a line supporting N A S at p and let R1, R2 be the 

corresponding closed rays at p with R1 U R2 = H. It is clear that since p E ker S, 

S lies in one of the closed halfplanes determined by/4. Consider the family ~ of 

rays consisting of R1, R2, together with rays of the form R (p, q) emanating from 

p through q for some q in Q. It is not hard to show that for R in ~,  R contains 

at most two members of Q. Any two (not necessarily distinct) rays in ~ bound a 

closed subset of S, and we Jet ~/¢ denote the collection of all these closed regions. 

Moreover, since Q is closed, to every point of S there corresponds a minimal 

member A of ~ which contains x (i.e., if B is in ~ and B contains x, then 

A C B ) .  
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Using these remarks, together with the Lawrence, Hare, KenellyTheorem,it  is 

easy to show that we may assume Q to be finite: For any finite subset 

{x~: 1 _-< i =< n} of S, to each x~ there corresponds a minimal member A,  of 

which contains x~. Each lnc point of S in A, must lie on one of the bounding rays 

of A~; hence A, contains at most four members of Q. The set So-= 

conv (Q U {p})U (UT=, A,) is a closed subset of S satisfying the hypothesis of 

Theorem 1 and having finitely many lnc points. Furthermore, by the Lawrence, 

Hare, Kenelly Theorem, it is sufficient to show that So is expressible as a union of 

m - 1 convex sets. Hence without loss of generality we may assume that Q is 

finite. 

For convenience, order the points of Q U {p} in a clockwise direction along 

bdryconv(Q U {p}), letting p be the-first point in our ordering. If Q U {p} = 

{ s l , "  ", s,}, this induces a natural order among the rays of ~,  where R1, R,+1 

denote the first and last rays, with R, U R,+, = H, and R, = R (p, s,) for 2 =< i =< n. 

If B~ denotes the member of ~ determined by R, and R~+~, we let p~ = s~ and 

q~ = s~+l, and refer to p~, q, as the members of Q U {p} corresponding to B,, 

1 =< i =< n (where s,+~ = s~ = p).  

We examine the B, sets, B~ determined by consecutive rays R~, R~.~. For x, y 

in B~ -= B~ - {R, U R,+,}, [p, x] U [p, y] C_ S, no Inc point of S lies in cony {p, x, y}, 

so by a result of Valentine [7, cor. 1], conv{p, x, y} C_ S. Hence [x, y] C_ S. Then 

clearly [x,y]_C B'~, B'~ is convex, and c l (B0 is convex. We call cl(B'~)-= V~ a 

wedge of S, l=<i=<n. 

Moreover, we may assume that each point of S lies in some wedge: Clearly for 

x in S not in any wedge, then x must lie on some ray R (p, q), q E Q (and there 

are finitely many such rays since Q is finite). Furthermore, for an appropriate q, 

the open ray R(q ,  x )  ~ {q} is disjoint from cl (int S). Let ~0 denote the collection 

of all such open rays, Leo the corresponding collection of lines determined by rays 

in ~0, with card Leo = k. 

We assert that 2 = < m - k  and that the set S - ( U ~ o )  is ( m - k ) - c o n v e x :  

Clearly there are k points of S in U Leo which are visually independent via S and 

which see no point of s -  ( o  Leo)# O. Hence S -  (U Leo) contains at most 

m -  k -  1 points which are visually independent via S ~ (U ~?o), and 1 _-< 

m -  k -  1. Using a standard convergence argument, the set S ~ (U ~0) is 

(m - k)-convex. Also, S ~ ( U ~0) satisfies the hypothesis of Theorem 1 and has 

the property that each of its points lies in a wedge. If we show the set S - ( U ~o) 

to be expressible as a union of m - k - 1 convex sets, these sets, together with 

the k convex sets of the form L Iq S, L in Leo, yield a decomposition of S into 

m - 1 convex sets. Thus it is sufficient to prove the theorem for the case in which 
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S is the union of its wedges. Moreover,  this condition implies that each R in 

- {R1, R,+I} contains exactly one member  of O, and R1 fh O = Rn+~ tq O = 0 .  

Finally, we are ready for the proof of the theorem. We decompose S into 

m - 1  convex sets by defining °//1,..., q/m-l, each an appropriate collection of 

wedges of S. We assign wedges to the 0//, sets in the following manner: 

Using notation discussed above, let V~,-. . ,  V, denote the wedges of S, where 

for i < j, Vi precedes Vj in our clockwise ordering. Also, assume 2 =< m - 1 < n, 

for otherwise the result is immediate. Clearly conv (V~ U V2) e" S, so let V1 be in 

q/l, V2 be in °//2. If conv(V~ t_J V3)_C S, let V3 be in q/~. Otherwise, let V3 be in 

q/3. Inductively, assume that each of the wedges V~,-.-,  Vs_~, j <_- n, has been 

assigned to one of the sets q/l,. •., q/k and let W, denote the last wedge assigned 

to q/, (i.e., the wedge a~signed to q/, which has largest subscript), 1 =< i _- k. If 

necessary, relabel the W~ and corresponding q/, sets so that for 1 =< i < l _-< k, IT', 

precedes W~ in our ordering. We assign Vj in the following manner: If for some 

Wi, 1 =  < i _-< k, conv(Vj U Wi)C_ S, select the W~ having largest subscript for 

which cony(V, U W~)C_S, and let Vs be in q/~. Otherwise, let Vj be in q/k+1. 

We will show that for k = m - 1, there is a Wi with conv (V, U Wi) _C S. Thus 

continuing inductively, every wedge may be assigned to some qL, 1 -< i = m - 1. 

Moreover,  it is easy to see that S i - c o n v ( U { V :  V a member  of q/i}) is 

contained in S, and S = U ?=]~ Si is the desired decomposition. Note that when S 

is exactly m-convex, m - 1 of the 0// sets will be required. Certainly the bound of 

m - 1 is best possible. 

The following result will be useful in completing the proof. 

ASSERTION. If wedges have been assigned to each of °ll~, . . ., qlk in the manner 

indicated above, then there is a corresponding set o[ k visually independent points 

in S. 

PROOF OF ASSERTION. Relabel the o7/ sets so that for 1 =< i =< k - 1, the first 

wedge assigned to qL precedes the first wedge assigned to ~/k in our clockwise 

ordering, and let Wk denote the first wedge in q/k. NOW examine the wedges 

preceding W~. Each of these wedges lies in one of 0//~,..., 0-//~_1, and we relabel 

these 0// sets so that for 2 =< i =< k - 1, the last member of 0//~ (preceding WE) 

follows the last member  of q/~, and let W, denote this last member  of °//1. Note 

that each wedge between W1 and WE (i.e., following W, and preceding W~ in 

our clockwise ordering) lies in one of °/G,' '  ', q/k-~. 
By the Lawrence, Hare, Kenelly Theorem, we may assume that each wedge 

has polygonal boundary, and clearly our clockwise ordering imposes a natural 

order on the boundary of each wedge. Letting pi, q, denote the members of 
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Q U{p} corresponding to W,, we will show that there exist points 

rl, x2 , "  ", x~_l, rk in (bdry S ) - Q  having the following properties: The point 

r~ # q~ lies on the last segment of (bdry S) tq Wt, r~ # pk on the first segment of 

(bdry S) f3 Wk. For 2 =< i =< k . -  1, x~ lies either on the line L =- L(qt, pk) deter- 

mined by qt and p~ or in the open halfspace determined by L which does not 

contain p (i.e., beyond L from p). Also, x, lies in a wedge between W1 and Wk. 

Moreover,  for any y~ in [rl, q~) and any yk in (pk, rk], the points YL, x2 ,"  ", xk-~, yk 

are visually independent via S. 

The proof is by induction. For k = 1, the result is trivial. For k = 2, let S~2 

denote the union of wedges in S between WL and W2, together with W, and W2. 

Certainly conv (W~ t_l W2)fZ S, for otherwise, since W2 is the first member  of °/12 

in $12 and WL is the last member  of q/~ preceding W2, W2 would have been 

placed in q/1 in our assignment of wedges. Moreover,  it is clear that W~, W2 must 

be consecutive wedges, q~ = p2, and for any r l~  q~ on the last segment of 

(bdry S) tq W~ and any rz ~ p2 on the first segment of (bdry S) f3 W2, no point of 

[rl, q~) sees any point of (p2, r2] via S. 

Let k be greater than 2 and assume that t he  result is true for all positive 

integers less than k to prove for k. By the argument above, conv (W~ t_J Wk) is 

not contained in S. Hence for some x~ in W~ and some xk in Wk, [x~, xk] g S. 

Moreover, we may assume that x~ is on the last segment of (bdry S)fq W~, 

x~ ~ q~, and that x~ is on the first segment of (bdry S) f3 Wk, xk~ p~. (Since k > 2, 

q~ ~ pk.) Further, clearly at least one of x~, x~ is beyond L (ql, pk) from p. Hence 

there are two cases to consider. 

Case 1. If x~ is beyond L (ql, pk) from p, let T1k denote the union of the 

wedges of S between W~ and Wk. Then no point of [x~, q~) sees any point of TLk 

beyond L (x~, ql) from p, and no point of [x~, q~) sees any point of T~E -- {q~} on 

or beyond L (q~, pk). Also, we may assume that x~ has been selected so that no 

point on [x~,q~) sees any point of (pk, xk] via S. Clearly each wedge in T~ 

belongs to one of °//2,'-., 0-//~_~. Relabel the sets q/2, . . . ,  q/~_~ so that the last 

wedge of °//2 in T~ precedes the last wedge of % in T~, 3 < i -< k - 1, and let 

W2 denote this last wedge of °//2. By our induction hypothesis applied to 

T~ t_l {W~} and q/2, • • ", 0//~, we may select r~, r~, and (if 3 < k)  x3,..  ', x~_l in the 

manner indicated, with each x, either on or beyond L (q2, p~) and between W2 

and W~. Letting x :=  r2, the points x2, x3,. . ' ,x~-~ all lie in T~, either on 

L (q~,p~) or beyond the line from p, so no point of [x~,q~) sees any of these 

points via S. Also, no point of [x~, ql) sees any point of (p~, x~] t3 (p~, r~] = (p~, r~]. 

Letting rl = x~, the points r~, r~, x~,...,x~_~ satisfy the desired requirements, 

finishing the inductive argument for case 1. 
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Case 2. In case xt is not beyond L (ql, pk) from p, then xk must have this 

property. By an argument similar to that in case 1, no point of (pk, XE ] sees any 

point of T1k -- {p~} on or beyond L (q~, pk), nor any point on [x~, qt). Each wedge 

between W~ and W~ lies in one of q/2,"" ", °//k-~, and we may relabel the ¢/ sets 

so that the first wedge of q/~-~ in T~ follows the first wedge of ¢/i in Ttk, 

2 =< i =< k - 2. Let Wk-~ denote this first wedge of °//k-l. Applying our inductive 

hypothesis to T~k U {W~} and q/l, • • ", q/~-~, we may select r~, r~_~, and (if 3 < k) 

x 2 , "  ", xk-2 as indicated. Letting [x~, ql) N [r~, q~) = [r~, q~), with xk-~ = rk-1 and 

r~ = x~, the points r'l, rk, x2, • • ", xk-~ satisfy the required conditions. This finishes 

case 2 and completes the inductive argument. Thus the assertion is proved. 

Hence if wedges have been assigned to each of 0//~,..., q/k, there corresponds 

a set of k visually independent points. Since S is m-convex, no more than m - 1 

of its points are visually independent,  and every wedge will be assigned to some 

~,, l < = i < = m - 1 .  
An easy induction may be used to show that S, ~ conv(  tJ { V: V a member  of 

~ }  is contained in S for 1 _-< i < m - 1, so S = 1,37~ ~ Si is the desired decomposi- 

tion. Since S is m -convex, the result is best possible for every m, and the proof of 

Theorem 1 is complete. 

The author wishes to thank the referee for the following observation: 

Theorem 1 remains valid if instead of the existence of a p in [(bdry S )N 

( k e r S ) ] - Q ,  one assumes that S is (locally) supported at a point p of 

(bdry S) f3 (ker S). 
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